- Home
- Standard 12
- Mathematics
निम्नलिखित आव्यूहों को एक सममित आव्यूह तथा एक विषम सममित आव्यूह के योगफल के रूप में व्यक्त कीजिए: $\left[\begin{array}{ccc}3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2\end{array}\right]$
Solution
Let $A=\left[\begin{array}{ccc}3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2\end{array}\right],$ then $A^{\prime}$ $=\left[\begin{array}{ccc}3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2\end{array}\right]$
Now, $A+A^{\prime}=\left[\begin{array}{ccc}3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2\end{array}\right]$ $+\left[\begin{array}{ccc}3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2\end{array}\right]$ $=\left[\begin{array}{ccc}6 & 1 & -5 \\ 1 & -4 & -4 \\ -5 & -4 & 4\end{array}\right]$
$P=\frac{1}{2}\left(A+A^{\prime}\right)=\frac{1}{2}\left[\begin{array}{ccc}6 & 1 & -5 \\ 1 & -4 & -4 \\ -5 & -4 & 4\end{array}\right]$ $=\left[\begin{array}{ccc}3 & \frac{1}{2} & -\frac{5}{2} \\ \frac{1}{2} & -2 & -2 \\ -\frac{5}{2} & -2 & 2\end{array}\right]$
Now, $P^{\prime}=\left[\begin{array}{ccc}3 & \frac{1}{2} & -\frac{5}{2} \\ \frac{1}{2} & -2 & -2 \\ -\frac{5}{2} & -2 & 2\end{array}\right]=P$
Thus, $P=\frac{1}{2}\left(A+A^{\prime}\right)$ is symmetric matrix.
Now, $A-A^{\prime}=\left[\begin{array}{ccc}3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2\end{array}\right] $ $-\left[\begin{array}{ccc}3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2\end{array}\right]$ $=\left[\begin{array}{ccc}0 & 5 & 3 \\ -5 & 0 & 6 \\ -3 & -6 & 0\end{array}\right]$
Let $Q=\frac{1}{2}\left(A-A^{\prime}\right)=\frac{1}{2}\left[\begin{array}{ccc}0 & 5 & 3 \\ -5 & 0 & 6 \\ -3 & -6 & 0\end{array}\right]$ $=\left[\begin{array}{ccc}0 & \frac{5}{2} & \frac{3}{2} \\ -\frac{5}{2} & 0 & 3 \\ -\frac{3}{2} & -3 & 0\end{array}\right]$
Now, $Q^{\prime}=\left[\begin{array}{ccc}0 & -\frac{5}{2} & -\frac{3}{2} \\ \frac{5}{2} & 0 & -3 \\ \frac{3}{2} & 3 & 0\end{array}\right]=-Q$
Thus, $Q=\frac{1}{2}\left(A-A^{\prime}\right)$ is a skew-symmetric matrix.
Representing $A$ as the sum of $P$ and $Q:$
$P+Q=\left[\begin{array}{ccc}3 & \frac{1}{2} & \frac{-5}{2} \\ \frac{1}{2} & -2 & -2 \\ -\frac{5}{2} & -2 & 2\end{array}\right]$ $+\left[\begin{array}{ccc}0 & \frac{5}{2} & \frac{3}{2} \\ -\frac{5}{2} & 0 & 3 \\ -\frac{3}{2} & -3 & 0\end{array}\right]$ $=\left[\begin{array}{ccc}3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2\end{array}\right]$ $=A$